Congresso SBO 2024

Dados do Trabalho


Título

ASSESSMENT OF KNOWLEDGE OF THE IMPORTANCE OF CORNEAL BIOMECHANICS IN GLAUCOMA AMONG PHYSICIANS, OPHTHALMOLOGISTS, AND GLAUCOMA SPECIALISTS

Resumo

Purpose: To assess healthcare professionals' knowledge of corneal biomechanics in glaucoma and identify knowledge gaps for educational focus.
Methods: A cross-sectional, observational study involving an online questionnaire addressing knowledge and importance of corneal biomechanics in glaucoma patients, completed by volunteer ophthalmologists, glaucoma specialists, and physicians from other specialties residing in Brazil. Data analysis was based on knowledge about the subject in these three groups, and the analyses were performed using the statistical package SPSS 20.0.
Results: Out of 316 participants, 312 were analyzed after excluding 4 for incomplete responses. Glaucoma specialists showed superior knowledge in corneal biomechanics (99%) compared to non-specialists (90.3%) and other medical professionals (32.1%). Knowledge of specific devices like ORA and Corvis ST was higher among specialists. However, even among specialists, detailed knowledge of biomechanics' applicability in glaucoma was less common.
Conclusion: The study highlights the need for enhanced knowledge dissemination on corneal biomechanics in glaucoma across the medical community. Despite glaucoma specialists' deeper understanding, there's a general uncertainty about biomechanics' practical application. Addressing this through digital education tools and distance learning could bridge the knowledge gap, benefiting various medical specialties.

Referências Bibliográficas

1. Jayaram H, Kolko M, Friedman DS, Gazzard G. Glaucoma: now and beyond. Lancet. 2023;402(10414):1788-801. Epub 20230921. doi: 10.1016/S0140-6736(23)01289-8. PubMed PMID: 37742700.
2. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901-11. doi: 10.1001/jama.2014.3192. PubMed PMID: 24825645; PubMed Central PMCID: PMC4523637.
3. Amaral DC, Louzada RN, Moreira PHS, Oliveira LNd, Yuati TT, Guedes J, et al. Combined Endoscopic Cyclophotocoagulation and Phacoemulsification Versus Phacoemulsification Alone in the Glaucoma Treatment: A Systematic Review and Meta-Analysis. Cureus. 2024;16(3):e55853. doi: 10.7759/cureus.55853.
4. Lim R. The surgical management of glaucoma: A review. Clin Exp Ophthalmol. 2022;50(2):213-31. Epub 20220117. doi: 10.1111/ceo.14028. PubMed PMID: 35037376.
5. Collaborators GBaVI, Study VLEGotGBoD. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021;9(2):e144-e60. Epub 20201201. doi: 10.1016/S2214-109X(20)30489-7. PubMed PMID: 33275949; PubMed Central PMCID: PMC7820391.
6. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714-20; discussion 829-30. doi: 10.1001/archopht.120.6.714. PubMed PMID: 12049575.
7. Caprioli J, Varma R. Intraocular pressure: modulation as treatment for glaucoma. Am J Ophthalmol. 2011;152(3):340-4.e2. doi: 10.1016/j.ajo.2011.05.029. PubMed PMID: 21855671.
8. Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet. 2017;390(10108):2183-93. Epub 20170531. doi: 10.1016/S0140-6736(17)31469-1. PubMed PMID: 28577860.
9. Nuyen B, Mansouri K. Fundamentals and Advances in Tonometry. Asia Pac J Ophthalmol (Phila). 2015;4(2):66-75. doi: 10.1097/APO.0000000000000118. PubMed PMID: 26065347.
10. Esporcatte LPG, Salomão MQ, Junior NS, Machado AP, Ferreira É, Loureiro T, et al. Corneal biomechanics for corneal ectasia: Update. Saudi J Ophthalmol. 2022;36(1):17-24. Epub 2022/08/17. doi: 10.4103/sjopt.sjopt_192_21. PubMed PMID: 35971484; PubMed Central PMCID: PMC9375464.
11. Liu J, Roberts CJ. Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg. 2005;31(1):146-55. Epub 2005/02/22. doi: 10.1016/j.jcrs.2004.09.031. PubMed PMID: 15721707.
12. Silva JASd, Silva RSd, Ambrósio Jr R. Relevância da biomecânica da córnea no glaucoma. Revista Brasileira de Oftalmologia. 2014;73.
13. Qassim A, Mullany S, Abedi F, Marshall H, Hassall MM, Kolovos A, et al. Corneal Stiffness Parameters Are Predictive of Structural and Functional Progression in Glaucoma Suspect Eyes. Ophthalmology. 2021;128(7):993-1004. Epub 20201125. doi: 10.1016/j.ophtha.2020.11.021. PubMed PMID: 33245936.
14. Salvetat ML, Zeppieri M, Tosoni C, Felletti M, Grasso L, Brusini P. Corneal Deformation Parameters Provided by the Corvis-ST Pachy-Tonometer in Healthy Subjects and Glaucoma Patients. J Glaucoma. 2015;24(8):568-74. doi: 10.1097/IJG.0000000000000133. PubMed PMID: 25318572.
15. Amaral DC, Menezes AHG, Vilaça Lima LC, Faneli AC, Neto PFS, Canedo ALC, et al. Corneal Collagen Crosslinking for Ectasia After Refractive Surgery: A Systematic Review and Meta-Analysis. Clinical Ophthalmology. 2024;18(null):865-79. doi: 10.2147/OPTH.S451232.
16. Fontes BM, Ambrósio R, Jardim D, Velarde GC, Nosé W. Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology. 2010;117(4):673-9. doi: 10.1016/j.ophtha.2009.09.023. PubMed PMID: 20138369.
17. Luz A, Fontes BM, Lopes B, Ramos I, Schor P, Ambrósio R. ORA waveform-derived biomechanical parameters to distinguish normal from keratoconic eyes. Arq Bras Oftalmol. 2013;76(2):111-7. doi: 10.1590/s0004-27492013000200011. PubMed PMID: 23828472.
18. Ventura BV, Machado AP, Ambrósio R, Ribeiro G, Araújo LN, Luz A, et al. Analysis of waveform-derived ORA parameters in early forms of keratoconus and normal corneas. J Refract Surg. 2013;29(9):637-43. doi: 10.3928/1081597X-20130819-05. PubMed PMID: 24016349.
19. Catania F, Morenghi E, Rosetta P, Paolo V, Vinciguerra R. Corneal Biomechanics Assessment with Ultra High Speed Scheimpflug Camera in Primary Open Angle Glaucoma Compared with Healthy Subjects: A meta-analysis of the Literature. Curr Eye Res. 2023;48(2):161-71. Epub 20220418. doi: 10.1080/02713683.2022.2059809. PubMed PMID: 35385343.
20. Lee SH, Lee EJ, Kim TW. Structural characteristics of the acquired optic disc pit and the rate of progressive retinal nerve fiber layer thinning in primary open-angle glaucoma. JAMA Ophthalmol. 2015;133(10):1151-8. doi: 10.1001/jamaophthalmol.2015.2453. PubMed PMID: 26247160.
21. Park HY, Hwang YS, Park CK. Ocular characteristics associated with the location of focal lamina cribrosa defects in open-angle glaucoma patients. Eye (Lond). 2017;31(4):578-87. Epub 2016/12/10. doi: 10.1038/eye.2016.270. PubMed PMID: 27935604; PubMed Central PMCID: PMC5395997.
22. Brazuna R, Alonso RS, Salomão MQ, Fernandes BF, Ambrósio R. Ocular Biomechanics and Glaucoma. Vision (Basel). 2023;7(2). Epub 20230423. doi: 10.3390/vision7020036. PubMed PMID: 37218954; PubMed Central PMCID: PMC10204549.
23. Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA. Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006;141(5):868-75. Epub 2006/03/11. doi: 10.1016/j.ajo.2005.12.007. PubMed PMID: 16527231.
24. De Moraes CV, Hill V, Tello C, Liebmann JM, Ritch R. Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma. 2012;21(4):209-13. Epub 2011/06/10. doi: 10.1097/IJG.0b013e3182071b92. PubMed PMID: 21654511.
25. Susanna CN, Diniz-Filho A, Daga FB, Susanna BN, Zhu F, Ogata NG, et al. A Prospective Longitudinal Study to Investigate Corneal Hysteresis as a Risk Factor for Predicting Development of Glaucoma. Am J Ophthalmol. 2018;187:148-52. Epub 2018/01/07. doi: 10.1016/j.ajo.2017.12.018. PubMed PMID: 29305310; PubMed Central PMCID: PMC6884090.
26. Brandt JD, Beiser JA, Gordon MO, Kass MA, Group OHTSO. Central corneal thickness and measured IOP response to topical ocular hypotensive medication in the Ocular Hypertension Treatment Study. Am J Ophthalmol. 2004;138(5):717-22. doi: 10.1016/j.ajo.2004.07.036. PubMed PMID: 15531304.
27. Zarei R, Zamani MH, Eslami Y, Fakhraei G, Tabatabaei M, Esfandiari AR. Comparing corneal biomechanics and intraocular pressure between healthy individuals and glaucoma subtypes: A cross-sectional study. Ann Med Surg (Lond). 2022;82:104677. Epub 20220915. doi: 10.1016/j.amsu.2022.104677. PubMed PMID: 36268371; PubMed Central PMCID: PMC9577659.
28. Tulchinsky TH, Varavikova EA. Expanding the Concept of Public Health. The New Public Health: Copyright © 2014 Elsevier Inc. All rights reserved.; 2014. p. 43-90.
29. Thimbleby H. Technology and the future of healthcare. J Public Health Res. 2013;2(3):e28. Epub 20131201. doi: 10.4081/jphr.2013.e28. PubMed PMID: 25170499; PubMed Central PMCID: PMC4147743.
30. Frenk J, Chen LC, Chandran L, Groff EOH, King R, Meleis A, et al. Challenges and opportunities for educating health professionals after the COVID-19 pandemic. Lancet. 2022;400(10362):1539-56. doi: 10.1016/S0140-6736(22)02092-X. PubMed PMID: 36522209; PubMed Central PMCID: PMC9612849.
31. Ernawati DK, Widhiartini IAA, Budiarti E. Knowledge and attitudes of healthcare professionals on prescribing errors. J Basic Clin Physiol Pharmacol. 2021;32(4):357-62. Epub 20210625. doi: 10.1515/jbcpp-2020-0411. PubMed PMID: 34214364.
32. Stanojević-Ristić Z, Mrkić I, Ćorac A, Dejanović M, Mitić R, Vitković L, et al. Healthcare Professionals' Knowledge and Behaviors Regarding Drug-Dietary Supplement and Drug-Herbal Product Interactions. Int J Environ Res Public Health. 2022;19(7). Epub 20220403. doi: 10.3390/ijerph19074290. PubMed PMID: 35409970; PubMed Central PMCID: PMC8998985.
33. Brazuna R, Salomão M, Esporcatte B, Macedo M, Esporcatte L, Colombini GNUI, et al. Corneal biomechanics and glaucoma beyond the bidirectional impact of intraocular pressure and corneal deformation response. 2022;81. doi: 10.37039/1982.8551.20220036.
34. Al-Obaida I, Al Owaifeer AM, Ahmad K, Malik R. The relationship between axial length, age and intraocular pressure in children with primary congenital glaucoma. Sci Rep. 2020;10(1):17821. Epub 20201020. doi: 10.1038/s41598-020-74126-5. PubMed PMID: 33082416; PubMed Central PMCID: PMC7575558.
35. Chen YY, Wang TH, Huang JY, Su CC. Relationship of axial length and corneal biomechanical properties with susceptibility to unilateral normal-tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2022;260(1):255-64. Epub 20210819. doi: 10.1007/s00417-021-05346-2. PubMed PMID: 34410485.
36. Juliano J, Burkemper B, Lee J, Nelson A, LeTran V, Chu Z, et al. Longer Axial Length Potentiates Relationship of Intraocular Pressure and Peripapillary Vessel Density in Glaucoma Patients. Invest Ophthalmol Vis Sci. 2021;62(9):37. doi: 10.1167/iovs.62.9.37. PubMed PMID: 34311470; PubMed Central PMCID: PMC8322720.
37. Venkataraman P, Madhuri MB, Mohan N. Corneal Biomechanics in Glaucoma – A Review of the Current Concepts and Practice. tnoa Journal of Ophthalmic Science and Research. 2020;58(2).
38. Ye Y, Yang Y, Fan Y, Lan M, Yu K, Yu M. Comparison of Biomechanically Corrected Intraocular Pressure Obtained by Corvis ST and Goldmann Applanation Tonometry in Patients With Open-angle Glaucoma and Ocular Hypertension. J Glaucoma. 2019;28(10):922-8. Epub 2019/08/28. doi: 10.1097/ijg.0000000000001348. PubMed PMID: 31453898.
39. Wang W, Du S, Zhang X. Corneal Deformation Response in Patients With Primary Open-Angle Glaucoma and in Healthy Subjects Analyzed by Corvis ST. Invest Ophthalmol Vis Sci. 2015;56(9):5557-65. Epub 2015/08/26. doi: 10.1167/iovs.15-16926. PubMed PMID: 26305527.
40. Tian L, Wang D, Wu Y, Meng X, Chen B, Ge M, et al. Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol. 2016;94(5):e317-24. Epub 2015/02/03. doi: 10.1111/aos.12672. PubMed PMID: 25639340.
41. Komninou MA, Seiler TG, Enzmann V. Corneal biomechanics and diagnostics: a review. Int Ophthalmol. 2024;44(1):132. Epub 20240313. doi: 10.1007/s10792-024-03057-1. PubMed PMID: 38478103; PubMed Central PMCID: PMC10937779.
42. Wang J, Liu X, Bao F, Lopes BT, Wang L, Eliasy A, et al. Review of ex-vivo characterisation of corneal biomechanics. Medicine in Novel Technology and Devices. 2021;11:100074. doi: https://doi.org/10.1016/j.medntd.2021.100074.
43. Wang Y, Cao H, Chen W, Bao F, Elsheikh A. Editorial: How can corneal biomechanics help with clinical applications? Front Bioeng Biotechnol. 2023;11:1186938. Epub 20230504. doi: 10.3389/fbioe.2023.1186938. PubMed PMID: 37214299; PubMed Central PMCID: PMC10192889.
44. Esporcatte LPG, Salomão MQ, Lopes BT, Vinciguerra P, Vinciguerra R, Roberts C, et al. Biomechanical diagnostics of the cornea. Eye Vis (Lond). 2020;7:9. Epub 20200205. doi: 10.1186/s40662-020-0174-x. PubMed PMID: 32042837; PubMed Central PMCID: PMC7001259.

Área

GLAUCOMA (trabalhos)

Categoria

Oral

Instituições

UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO - Rio de Janeiro - Brasil

Autores

RODRIGO BRAZUNA, DILLAN CUNHA AMARAL, BRUNO FERNANDES, MARCELLA Q. SALOMÃO, JAIME GUEDES, GIOVANNI NICOLLA UMBERTO ITALIANO, ALEXANDRE COSTA NETO, RENATO AMBRÓSIO JR